Optimality criteria for the prediction of metabolic fluxes in yeast mutants.
نویسندگان
چکیده
Constraint-based models of cellular metabolism, such as flux balance analysis (FBA), use convex analysis and optimization to study metabolic networks at a genome scale. The availability of reaction lists for numerous organisms, along with a variety of network analysis and optimization tools, is making these approaches increasingly popular for metabolic engineering and biomedical applications, as well as for addressing fundamental biological questions. It is therefore very important to assess the predictive capacity of these models and to understand how to interpret them in a biologically relevant manner. Typically, model assessment is limited to gauging the ability to predict phenotypes, such as viability under different environmental and genetic conditions. These types of assessments, for the most part, focus only on the growth phenotype of the cells, but ignore the underlying flux predictions. While this may be sufficient for certain types of study, the question of whether flux balance models can reliably predict intracellular and transport fluxes is crucial for more detailed analysis, and remains largely unanswered. Here we compare FBA model predictions of yeast metabolic fluxes to a previously published set of experimentally determined fluxes for 13 different single gene deletion mutants across a variety of possible objective functions. We find that the specific optimization criteria used to determine fluxes have a significant impact on the accuracy of the predicted fluxes. Interestingly, while different optimization methods provide very different levels of agreement relative to experimental fluxes, they tend to provide similar predictions with respect to the effect of the perturbation on growth. This demonstrates that assessment of models at the level of flux predictions is a critical step in assessing the biological validity of different models and optimization criteria.
منابع مشابه
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast
Which transcription factors control the distribution of metabolic fluxes under a given condition? We address this question by systematically quantifying metabolic fluxes in 119 transcription factor deletion mutants of Saccharomyces cerevisiae under five growth conditions. While most knockouts did not affect fluxes, we identified 42 condition-dependent interactions that were mediated by a total ...
متن کاملIsogeometric Topology Optimization by Using Optimality Criteria and Implicit Function
A new method for structural topology optimization is introduced which employs the Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which are also used for creating the geometry and the surface of solution of the elasticity problem. Inspiration of the level set method zero level...
متن کاملEvaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling.
Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a n...
متن کاملThe Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum
The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the central metabolic fluxes predicted by m...
متن کاملPrinciples of optimal metabolic network operation
What is the optimal operation of metabolic networks? This question is interesting to answer, as it would provide information on which underlying principles have shaped metabolic networks during evolution, and it may allow us to identify some simple rules governing the operation of metabolic networks under different growth conditions. Such rules might be important for metabolic network engineeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 20 شماره
صفحات -
تاریخ انتشار 2008